Exact solution of the Dirac equation withCPviolation
نویسندگان
چکیده
منابع مشابه
Systematical Approach to the Exact Solution of the Dirac Equation for the Generalized Woods-Saxon Potential
Exact solution of the Dirac equation is given for the generalized Woods-Saxon potential. The Nikiforov-Uvarov method is used in the calculations following the formalism introduced by A. D. Alhaidari [Int. J. Mod. Phys. A 18, 4955 (2003)]. The energy eigenvalues and two-component spinor wavefunctions are obtained analytically. The bound states of the relativistic energy spectrum are illustrated ...
متن کاملAn Exact Solution of the Einstein’s Equation
In this short letter we present a rigorous vacuum solution of the Einstein’s equation with a few singular surfaces. In contrast with the well known solutions, this solution looks somewhat exotic and strange. The physical meanings of the parameters and coordinates are still absent. PACS numbers: 04.20-q, 04.20.Dw, 04.20.Jb, 04.25-g
متن کاملExact solution of the two-dimensional Dirac oscillator.
In the present article we have found the complete energy spectrum and the corresponding eigenfunctions of the Dirac oscillator in two spatial dimensions. We show that the energy spectrum depends on the spin of the Dirac particle. Typeset using REVTEX 1 Recently, Moshinsky and Szczepaniak [1] have proposed a new type of interaction in the Dirac equation which, besides the momentum, is also linea...
متن کاملOn Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
متن کاملAccurate solution of the Dirac equation on Lagrange meshes.
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2013
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.87.083508